Chavez, Sarah T

From: Vaughn, Dennis

Sent: Tuesday, January 18, 2022 11:15 AM

To: eric.peters@state.nm.us; Mascarenas, Marvin, NMENV

Cc: Chavez, Sarah T; Gallegos, Frank E; Paul Wade (PWade@montrose-env.com)

Subject: Admin Permit Follow-up to 12-9-21 Submittal

Attachments: Intel RePositioning Model Report _011222.docx; Locations for Model Sources

2022-01-12.pdf

Eric and Marvin,

As we have discussed, during our review of the permit application in our December 15th Community Environmental Working Group (CEWG) meeting, a community member pointed out an error is Section 16S. The original report noted that the land cover data from 1992 was used but this was an error. The national land cover data used in the creation of the met data was the year 2016, which is the most recent version of the national land cover data AERSURFACE uses. The date has been updated in the attached modeling report.

Section 16J was also discussed during the CEWG meeting. The report was updated to include 10 sensitive location with approximately 1 mile of the facility. Since this permit application is an administrative revision and public notice and public hearings are not a part of the permitting process, we answered "no" to both questions. Given the comments in the CEWG, we have updated the section as well in the attached document.

While neither of the above changes impact the modeling results, we believe it would be important to have an accurate model report for the records.

As requested, below is an updated table that was include in the original cover letter of the permit application. The values reflect the information that was used in the modeling analysis to demonstration compliance with the NAAQS . There is no difference in the input pollutant emissions between the 2021 and the 2011 modeling.

Unit Number or Control Equipment Unit Number	Source or Control Equipment Description	Old Model Description	New Model Description	New Capacity Inputs	Old Capacity Inputs
40	Acid Gas Scrubber	PUB Scrubber 1s	New F11X EXSC	50 K CFM	20 K CFM*
41	Acid Gas Scrubber	PUB Scrubber 2s	New F11X EXAM	5 K CFM	20 K CFM*
42	Acid Gas Scrubber	PUB Scrubber 3s	F09 Scrubber 5s	1 K CFM	20 K CFM*
43	Acid Gas Scrubber	F11Xe Scrubber 1s	F09 Scrubber 1s	8 K CFM	25 K CFM*
Acid Gas F11Xe Scrubber Scrubber 2s		F09 Scrubber 2s	8 K CFM	25 K CFM*	

66	Acid Gas Scrubber	PUB Scrubber 1s	F09 Scrubber 3s	8 K CFM	25 K CFM*
67	Acid Gas Scrubber	PUB Scrubber 2s	F09 Scrubber 4s	8 K CFM	50 K CFM*
73	Acid Gas Scrubber	PUB Scrubber 4s	F09 Scrubber 6s	1K CFM	20 K CFM*
137	Cooling Tower	137.NEC.CT.Us	APCI New	6000 gpm (each cell)**	6000 gpm (each cell)
138	Cooling Tower	138.NEC.CT.Us	APCI New	6000 gpm (each cell)**	6000 gpm (each cell)
139	Cooling Tower	139.NEC.CT.Us	APCI New	6000 gpm (each cell)**	6000 gpm (each cell)
172	Thermal Oxidizer	F11Xe Munters 11s	Munters F09	2.4 MMBtu/hr	2.4 MMBtu/hr
173	Thermal Oxidizer	F11Xe Munters 12s	Munters F09	2.4 MMBtu/hr	2.4 MMBtu/hr
174	Thermal Oxidizer	F11Xe Munters 13s	Munters F09	2.4 MMBtu/hr	2.4 MMBtu/hr
184	Cooling Tower	BCP Cooling Tower 1s	205.CUB.CT.U	4,000 gpm	10,000 gpm
185	Cooling Tower	BCP Cooling Tower 2s	205.CUB.CT.U	4,000 gpm	10,000 gpm
186	Cooling Tower	BCP Cooling Tower 3s	205.CUB.CT.U	4,000 gpm	10,000 gpm
187	Cooling Tower	BCP Cooling Tower 4s	205.CUB.CT.U	4,000 gpm	10,000 gpm
188	Cooling Tower	BCP Cooling Tower 5s	205.CUB.CT.U	4,000 gpm	10,000 gpm
189	Cooling Tower	BCP Cooling Tower 6s	205.CUB.CT.U	4,000 gpm	10,000 gpm
190	Cooling Tower	BCP Cooling Tower 7s	205.CUB.CT.U	4,000 gpm	10,000 gpm
191	Cooling Tower	BCP Cooling Tower 8s	205.CUB.CT.U	4,000 gpm	10,000 gpm
192	Cooling Tower	BCP Cooling Tower 9s	205.CUB.CT.U	4,000 gpm	10,000 gpm
193	Cooling Tower	BCP Cooling Tower 10s	205.CUB.CT.U	4,000 gpm	10,000 gpm

^{*} listed in NSR Permit 035M11R10 as TBD.

Intel has also decided to add an additional thermal oxidizer to the site to further enhance site redundancy. That oxidizer has already been permitted, and the map has been updated to reflect the location of this additional oxidizer.

Sincerely,

^{**} Initial design, final capacity may change with final design. Modeling conducted using old capacity inputs.

Intel Corporation – Rio Rancho EHS Environmental Engineer Email: dennis.vaughn@intel.com Mobile: 575-936-9640

Universal Application 4

Air Dispersion Modeling Report

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16-	16-A: Identification					
1	Name of facility:	Albuquerque Plant				
2	Name of company:	Intel Corporation				
3	Current Permit number:	325M11R10				
4	Name of applicant's modeler:	Paul Wade				
5	Phone number of modeler:	(505) 830-9680 x6				
6	E-mail of modeler:	pwade@montrose-env.com				

16	-B: Brief								
1	Was a modeling protocol submitted and approved?	Yes⊠	No□						
2	Why is the modeling being done? Moving Equipment								
3	Describe the permit changes relevant to the modeling.								
	Administrative Permit Revision for Re-Positioning of Permitted Sources								
4	What geodetic datum was used in the modeling?								
5	How long will the facility be at this location?	Permanent							
6	Is the facility a major source with respect to Prevention of Significant Deterioration (PSD)?	Yes□	No⊠						
7	Identify the Air Quality Control Region (AQCR) in which the facility is located	152							

	List the PSD baseline	dates for this region	n (minor or major	, as appropriate).					
	NO2			3/26/1997					
8	SO2			5/14/1981					
	PM10			3/26/1997					
	PM2.5			2/11/2013					
	Provide the name and	distance to Class I.	processyithin 50 la		200 lem for D	SD normita)			
9	None	distance to Class 1 a	areas within 50 Ki	in or the facility (300 KIII 101 F	SD permits).			
	1,010								
10	Is the facility located	in a non-attainment	area? If so descri	be below		Yes□	No⊠		
						I			
	Describe any special r	nodeling requireme	nts, such as strea	nline permit requ	irements.				
11	· · ·								
16	-C: Modeling	History of I	acility						
	Describe the modelin Air Quality Standard waivers).								
	Pollutant	Latest permit an number that mo pollutant facility	deled the	Date of Permit	Comments	Comments			
	СО	0325-M11		05/04/2011 NAAQS					
1	NO ₂	0325-M11		05/04/2011	_ `	NAAQS and Annual Increment			
1	SO ₂	0325-M11		05/04/2011	NAAQS	NAAQS			
	H ₂ S PM2.5	None 0325-M11		05/04/2011 NA A OC					
	PM10	0325-M11		05/04/2011	05/04/2011 NAAQS		and Increment		
	Lead	None		03/04/2011	TVAAQS as	nd merement			
	Ozone (PSD only)	None							
	NM Toxic Air Pollutants (20.2.72.402 NMAC	None							
	,			-	•				
16	-D: Modeling	performed:	for this ap	plication					
	For each pollutant, in Choose the most com analysis were also pe	nplicated modeling a					I and cumulative		
1	Pollutant	ROI	Cumulative analysis	Culpability analysis	Wa	aiver approved	Pollutant not emitted or not changed.		
	CO	\boxtimes							
	NO ₂	\boxtimes	\boxtimes						
	SO ₂	\boxtimes							

	Intel Corporation All			ıquerqu	ie Plant	01	/04/22 & Revision #1			
	H_2S							\boxtimes		
	PM2.5		\boxtimes			\boxtimes				
	PM10		\boxtimes							
	Lead							\boxtimes		
	Ozone							\boxtimes		
	State air to: (20.2.72.40 NMAC)							\boxtimes		
16-	E: New	Mex	cico tox	xic air pollutan	ıts m	ndeling				
10				pollutants (NMTAPs) fi			in 20.2.72.502 NMA	C that are mode	eled for this	
1	application			1						
	List any NI below, if re		that are em	itted but not modeled bed	cause s	tack height co	rrection factor. Add a	additional rows	to the table	
2	Pollutant	Emissi	on Rate ls/hour)	Emission Rate Screenin Level (pounds/hour)	_	ack Height neters)	Correction Factor	Emission Correcti	n Rate/ on Factor	
16-	F: Mod	leling	option	1S						
1				MOD used with regulator	ory defa	nult options? I	f not explain	Yes⊠	No□	
1/	C - C		J:	d ali a	_					
10-	Date of sur			urce modeling	10/13/2021					
					ir Quality Bureau was believed to be inaccurate, describe how the					
	sources mo	deled di	ffer from th	ne inventory provided. If ows as needed.						
2	AQB Source	ce ID	Description	of Corrections						
16-	H: Buil	ding	and st	ructure downy	wash	1				
1				nt at the facility?	39					
2	How many the facility		round stora	ge tanks are present at	3					

Was building downwash modeled for all buildings and tanks? If not explain why below.

No□

Yes⊠

3		
4	Building comments	

16-	I: Recept	ors and	modeled	property bou	ndary							
1	"Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with a steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. A Restricted Area is required in order to exclude receptors from the facility property. If the facility does not have a Restricted Area, then receptors shall be placed within the property boundaries of the facility. Describe the fence or other physical barrier at the facility that defines the restricted area.											
		Fencing and Security Patrols										
2				ccessible roads in the re restricted area?	estricted area.		Yes□	No⊠				
3	Are restricted a	rea boundary	y coordinates in	ncluded in the modeling	files?		Yes⊠	No□				
	Describe the re	ceptor grids	and their spaci	ng. The table below mag	y be used, adding row	s as need	ed.	•				
	Grid Type	Shape	Spacing	Start distance from restricted area or center of facility	End distance from restricted area or center of facility	Comments						
	Cartesian	Round	50	0	500							
4	Cartesian	Round	100	500	1000							
	Cartesian	Round	250	1000	3000							
	Cartesian	Round	500	3000	5000							
	Cartesian	Round	1000	5000	10000							
	Cartesian	Round	2000	10000	20000							
	Describe recep	tor spacing a	long the fence	line.								
5	50 meter											
	Describe the PS	SD Class I ar	ea receptors.									
6	None											

16-	J: Sensitive areas		
	Are there schools or hospitals or other sensitive areas near the facility? If so describe below.	Yes⊠	No□

This information is optional (and purposely undefined) but may help determine issues related to public notice.

Day Care and Pre-school Locations

Covenant Schools of Rio Rancho 1601 Barbara Loop SE, Rio Rancho, NM 87124

Daycare and pre-school services

Distance: ≈ 0.11 miles from North property line

Children's Corner

1598 Sara Rd SE, Rio Rancho, NM 87124

Daycare and pre-school services

Distance: ≈ 0.12 miles from North property line

La Petite Academy of Rio Rancho

1501 Barbara Loop SE, Rio Rancho, NM 87124

Educational daycare services

Distance: ≈ 0.16 miles from North property line

Little House on the Mesa

2009 Grande Blvd SE, Rio Rancho, NM 87124

Educational services

Distance: ≈ 0.21 miles from West property line

Little Explorers Child Development Center

4031 Barbara Loop SE, Rio Rancho, NM 87124

Day care- baby/infant day care – preschool daycare services

Distance: ≈ 0.34 miles

Happy Days Christen Day Care

2001 Golf Course Rd SE, Rio Rancho, NM 87124

Day care- pre K school daycare services

Distance: ≈ 1.0 miles

Springstone Montessori School

2441 Grande Blvd SE, Rio Rancho, NM 87124

Distance: ≈ 0.45 miles

Senior and Assisted Living Centers

The Retreat Alzheimer's Specialty Care 4075 Jackie Rd SE, Rio Rancho, NM 87124

Alzheimer and dementia assisted living centers

Distance: ≈ 0.38 miles

Buena Vista Senior Apartments

1355 Meadowlark Ln SE, Rio Rancho, NM 87124

Senior (55+) Living Community

Distance: ≈ 0.50 miles

Hospitals

1

Lovelace Westside Hospital

10501 Golf Course Rd NW, Albuquerque, NM 87114

Distance: ≈ 1.2 miles

3	The modeling review process may need to be accelerated if there is a public hearing. Are there	Yes⊠	No□
	likely to be public comments opposing the permit application?	168	NOL

16	-K: Mo	deling	Scena	arios							
1	Identify, define, and describe all modeling scenarios. Examples of modeling scenarios include using different production rates, times of day, times of year, simultaneous or alternate operation of old and new equipment during transition periods, etc. Alternative operating scenarios should correspond to all parts of the Universal Application and should be fully described in Section 15 of the Universal Application (UA3).										
	No alternat	ive scenar	rios. All so	ources mod	lel at 8760	hour per y	ear.				
2	Which scen	nario prod	uces the hi	ghest conc	entrations	? Why?					
2	N/A										
3	Were emis (This quest to the factor	ion pertain	ns to the "S	SEASON",	, "MONTI	ł", "HROF	DY" and 1		or sets, not	Yes□	No⊠
4									ore the factor if it makes fo		
	Hour of Day	Factor	Hour of Day	Factor							
	1		13								
	2		14								
	3		15 16								
	5		17								
	6		18			1					
5	7		19								
	8		20								
	9		21								
	10		22								
	11		23								
	12		24								
	If hourly, v	ariable en	nission rate	es were use	ed that wer	re not descr	ribed abov	e, describe	them below	•	
										,	
6	Were diffe	rent emiss	ion rates u	sed for sho	ort-term an	d annual n	nodeling?	If so descri	be below.	Yes□	 No⊠

16-	-L: NO ₂ Modeling
1	Which types of NO ₂ modeling were used?
	Check all that apply.

	\boxtimes	ARM2					
		100% NO _X to NO ₂ conversion					
	\boxtimes	PVMRM					
		OLM					
		Other:					
	Describe the NO ₂ modeling.						
2	ARM2 – ROI modeling ARM2 – Annual NAAQS and Increment modeling PVMRM – 1 hour NAAQS modeling						
Were default NO₂/NO _X ratios (0.5 minimum, 0.9 maximum or equilibrium) used? If not describe and justify the ratios used below. Yes⊠			No□				
4	Describe the design value used for each averaging period modeled.						
	1-hour: High eighth high Annual: Highest Annual Average of Three Years						

16-	M: Part	iculate Ma	tter Modelin	g			
	Select the po	ollutants for which	plume depletion mod	deling was	used.		
1		PM2.5					
	□ PM10						
	\boxtimes	None					
•	Describe the	particle size distr	ibutions used. Include	the source	of information.		
2							
3	Does the facility emit at least 40 tons per year of NO _X or at least 40 tons per year of SO ₂ ? Sources that emit at least 40 tons per year of NO _X or at least 40 tons per year of SO ₂ are considered to emit significant amounts of precursors and must account for secondary formation of PM2.5. Yes⊠					No□	
4	Was seconda	ary PM modeled f	or PM2.5?			Yes⊠	No□
	If MERPs w below.	ere used to accour	nt for secondary PM2.	.5 fill out th	ne information below. If another	method was use	d describe
	NO _X (ton/yr))	SO ₂ (ton/yr)		[PM2.5] _{annual}	[PM2.5] _{24-hour}	
	95.7		95.0		0.014 μg/m3	0.61 μg/m3	
5	95.7 95.0 0.014 μ g/m3 0.61 μ g/m3 PM _{2.5} annual = ((NO _X emission rate (tpy)/3184 + (SO ₂ emission rate (tpy)/2289)) x 0.2 μ g/m³ PM _{2.5} annual = ((95.7/3184) + (95.0/2289)) x 0.2 μ g/m³ = 0.014 μ g/m³ PM _{2.5} 24 hour = ((NO _X emission rate (tpy)/1155 + (SO ₂ emission rate (tpy)/225)) x 1.2 μ g/m³ PM _{2.5} 24 hour = ((95.7/1155) + (95.0/225)) x 1.2 μ g/m³ = 0.61 μ g/m³						

16-	N: Setback Distances
1	Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location.
1	N/A
2	Describe the requested, modeled, setback distances for future locations, if this permit is for a portable stationary source. Include a haul road in the relocation modeling.
	N/A

16-	O: PSD Incren	nent and Sourc	e IDs					
1		e match? If not, provide a		-I should match the ones in the nce table between unit numbers		Yes□		No□
	Unit Number in UA-2			Unit Numb	er in Modeling Files	3		
	N/A	/A						
2	The emission rates in the Tables 2-E and 2-F should match the these match? If not, explain why below.			ones in the modeling files. Do		Yes□		No□
	N/A							
3	Have the minor NSR exempt sources or Title V Insignificant Activities" (Table 2-B) sources been modeled?			able 2-B) sources	Yes		No⊠	
		crement for which pollut						
	Unit ID	NO ₂	SO_2		PM10		PM2.5	
	14	X			X			
	15	X			X			
	22	X			X			
	23	X			X			
	40				X			
	41				X			
	42				X			
4	43				X			
	66				X			
	67				X			
	68				X			
	69				X			
	70				X			
	71				X			
	72				X			
	73				X			
	75				X			
	76				X			
	159	X			X			

	165	X		X			
	166	X		X			
	167	X		X			
	168	X		X			
	169	X		X			
	170	X		X			
	171	X		X			
	172	X		X			
	173	X		X			
	174	X		X			
	175	X		X			
	176	X		X			
	177	X		X			
	178	X		X			
	179	X		X			
	180	X		X			
	181	X		X			
	182	X		X			
	183	X		X			
	184			X			
	185			X			
	186			X			
	187			X			
	188			X			
	189			X			
	190			X			
	191			X			
	192			X			
	193			X			
	194			X			
	195			X			
	196			X			
5	PSD increment descript (for unusual cases, i.e., after baseline date).	ion for sources. baseline unit expanded em	nissions	baseline unit expanded er	nissions af	ter baselin	e date
6	Are all the actual install This is necessary to veri	fy the accuracy of PSD in	crement mod	e application form, as requir deling. If not please explain ng installation dates below.	ed? Yes	s 🗆	No⊠
	Increment consuming so	ources from previous mode	eling				

16-	16-P: Flare Modeling							
1	For each flare or flaring scenario, complete the following							
	Flare ID (and scenario)	Average Molecular Weight	Gross Heat Release (cal/s)	Effective Flare Diameter (m)				
	N/A							

16-	16-Q: Volume and Related Sources					
1	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines? If not please explain how increment consumption status is determined for the missing installation dates below.	Yes□	No⊠			
	Describe the determination of sigma-Y and sigma-Z for fugitive sources.					
2						
2	Describe how the volume sources are related to unit numbers. Or say they are the same.					
3	Of say they are the same.					
4	Describe any open pits.					
4						
5	Describe emission units included in each open pit.					
	1					

	Were NMED provided background concentrations used? Identify the background station used							
	below. If non-NMED provided background concentrations were used describe the data that					Yes⊠	No⊠	
	was used.							
	CO: Del Nort	te High School (350	0010023)					
	NO ₂ : Del No	rte High School from	m Albuquerque l	Environmental				
	PM2.5: Del N	Norte High School (350010023)					
	PM10: Jeffer	son (350010026)						
	SO ₂ : Del Nor	SO ₂ : Del Norte High School (350010023)						
	Other:							
	Comments: NO2 background was generated by the City of Albuquerque Environmental Department from Del Norte Monitor Data.							
	Comments:		was generated b	y the City of Albuquerque	Environmental Dep	artificiti from	Del None	
		Monitor Data.		hly or hourly values? If so		Yes⊠	No□	
		Monitor Data.	s refined to mont		describe below.	Yes⊠		
		Monitor Data. ound concentrations Monitore	s refined to mont	hly or hourly values? If so	describe below.	Yes⊠		
	Were backgro	Monitor Data. ound concentrations Monitore	refined to mont	hly or hourly values? If so O2 Background – 3 ^r	d Highest Hourl	Yes⊠	No□	
	Were backgro	Monitor Data. Dound concentrations Monitore	refined to mont ed Seasonal N Winter	hly or hourly values? If so O2 Background – 3 ^r Spring	describe below. d Highest Hourl	Yes⊠	No□ Fall	
	Were backgro	Monitor Data. Dound concentrations Monitore	ed Seasonal N Winter 72.1	hly or hourly values? If so O ₂ Background – 3 ^r Spring 47.6	describe below. d Highest Hourl Summer 29.3	Yes⊠	No□ Fall 65.6	

5	69.1	51.7	32.7	58.0
6	69.7	63.9	39.3	57.8
7	72.8	70.7	46.4	63.5
8	77.6	71.8	48.5	64.5
9	80.0	61.1	34.2	65.9
10	71.4	48.0	27.3	55.0
11	62.0	28.6	24.3	47.3
12	48.1	18.9	19.9	35.4
13	36.9	17.6	17.0	28.2
14	35.1	15.7	15.9	25.3
15	33.6	14.8	17.4	24.2
16	37.2	15.3	19.4	28.0
17	48.4	17.1	20.4	38.0
18	73.0	19.4	19.3	69.6
19	79.3	38.5	21.7	79.1
20	78.1	53.2	30.9	77.1
21	77.3	48.0	34.1	73.4
22	76.5	56.3	30.8	70.4
23	75.0	58.8	34.9	69.7
24	72.4	57.9	33.6	70.9

Note: Aermod Version 21112 has a computing error with the NO₂ PVMRM mode of the model. Background input into the model is doubled at output. To resolve this error EPA recommends dividing by half the NO₂ background inputted in the model, which was done in this modeling analysis.

1	16-S: Meteorological Data				
1	Was NMED provided meteorological data used? If so select the station used.	Yes□	No⊠		

If NMED provided meteorological data was not used describe the data set(s) used below. Discuss how missing data were handled, how stability class was determined, and how the data were processed.

Dispersion model meteorological input files were created for the years 2010 - 2012 from meteorological data collected at the Intel site in Rio Rancho, NM for the years 2010 - 2012. Figure 3 shows wind rose diagram of the meteorological wind speed versus direction data that has been collected for the years 2010 - 2012.

AERMET wind speed threshold for surface data will be 0.4 meters per second.

To reduce the high incidence of calms and variable wind conditions, AERMINUTE (Version 15272) was used to supplement hourly observed wind speed and direction for the Albuquerque surface data when processing with AERMET.

AERMET/AERMOD requires that several additional parameters be input during data processing in AERMET:

- Surface roughness length (m)
- Albedo

2

Bowen Ratio

The surface roughness length influences the surface shear stress and is an important factor in determining the magnitude of mechanical turbulence and the stability of the boundary layer. The albedo is the fraction of total incident solar radiation reflected by the surface back to space without absorption. The daytime Bowen ratio, an indicator of surface moisture, is the

ratio of sensible heat flux to latent heat flux and, together with albedo and other meteorological observations, is used for determining planetary boundary layer parameters for convective conditions driven by the surface sensible heat flux.

These parameters would be obtained using AERSURFACE (Version 20060). AERSURFACE requires the input of land cover data from the U.S. Geological Survey (USGS) National Land Cover Data 2016 archives (NLCD 2016), which it uses to determine the land cover types for the user-specified location. AERSURFACE matches the NLCD 2016 land cover categories to seasonal values of albedo, Bowen ratio, and surface roughness. Values of surface characteristics are calculated based on the land cover data for the study area and output in a format for input into AERMET Stage 3. Site descriptive questions required by AERSURFACE include:

- Meteorological data from airport
- Continuous snowcover in winter
- Arid climate
- Dry climate

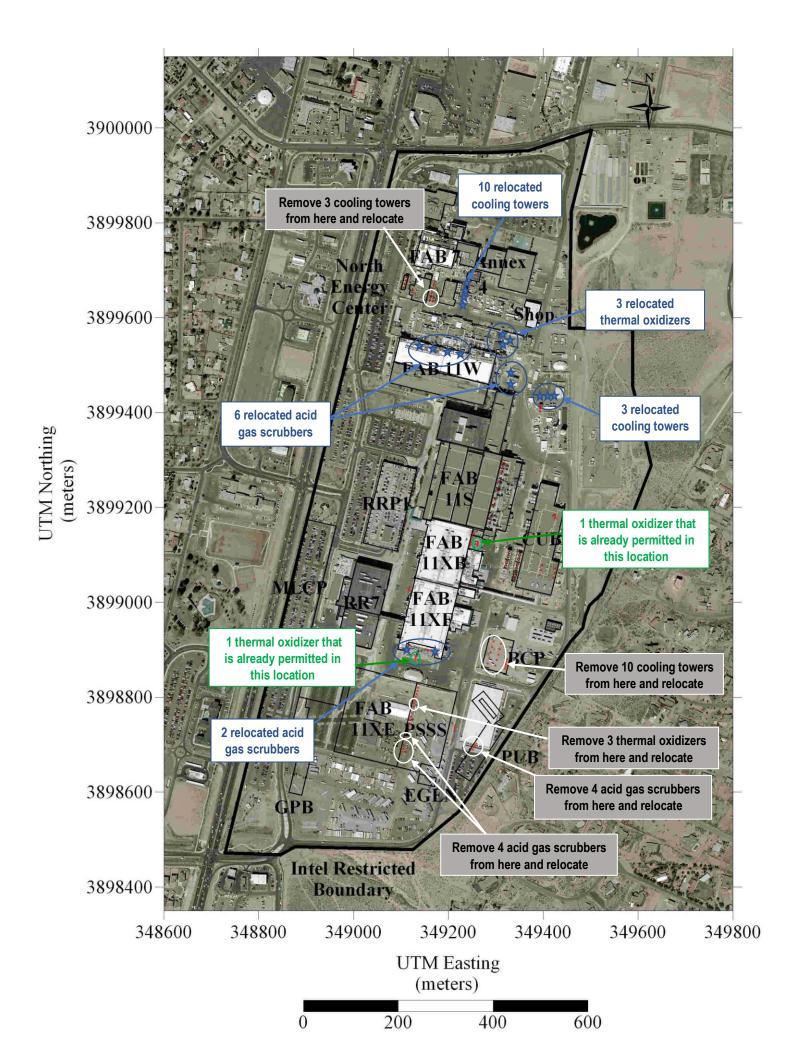
For the Intel meteorological data, NO was checked for airport data, NO was checked for continuous snowcover, YES was checked for arid climate, and YES was checked for dry climate. For each parameter, data was extracted from land cover data for each month of the year and 12 equal sectors radiating from the Intel site.

The meteorological data was processed using AERMET (Version 21112) and upper air from Albuquerque, NM for the same time period. The upper air and surface data are considered to be representative and comparable with the Intel site. The Intel meteorological data files; Albuquerque, NM upper air files; Albuquerque Airport surface air file, Albuquerque AERMINUTE files, and Intel meteorological data are included in this email submitted to the NMED-AQB Modeling Section for review. During AERMET processing, adjust U* was selected.

16-	16-T: Terrain					
1	Was complex terrain used in the modeling? If not, describe why below.	Yes⊠	No□			
2	What was the source of the terrain data?					
2	National Elevation Data (NED) 1/3 arc					

16	16-U: Modeling Files						
	Describe the modeling files:						
	File name (or folder and file name)	Pollutant(s)	Purpose (ROI/SIA, cumulative, culpability analysis, other)				
	Intel ROI Model	NOx, CO, SO2, PM	ROI				
1	Intel CIA NO2 1hr Model	NO2	Cumulative				
	Intel CIA NO2 Annual Model	NO2	Cumulative, Increment				
	Intel CIA PM10 Model	PM10	Cumulative, Increment				
	Intel CIA PM25 24Hr Model	PM2.5	Cumulative				
	Intel CIA PM25 Annual Model	PM2.5	Cumulative				

16-V: PSD New or Major Modification Applications									
1	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)?	Yes□	No⊠						
2	If not, did AQB approve an exemption from preconstruction monitoring?	Yes□	No⊠						
3	Describe how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring or monitoring exemption.								
	N/A								
4	Describe the additional impacts analysis required at 20.2.74.304 NMAC.								
•	N/A								
5	If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes□	No□						
	N/A								


16-W: Mod	eling Resul	lts								
1	significance levels for the specific pollutant. Was culpability analysis performed? If so describe below.						Yes⊠	No□		
	For PM2.5 24-hour analysis the "MaxDCount" file was reviewed to show that the contribution from Intel was below the SILs at all receptors that exceeded the NAAQS and determine the highest concentration where Intel sources were significant.									
Identify the maximum concentrations from the modeling analysis. Rows may be modified, added and removed from the table below as nec										necessary.
Pollutant, Time Period and	Facility	With Surrounding	Secondary PM (µg/m3)	Background Concentration (µg/m3)	Cumulative Concentration (µg/m3)	Value of Standard (µg/m3)	Percent of Standard	Location		
Standard								UTM E (m)	UTM N (m)	Elevation (ft)
NO2 1-Hr	114.0	N/A	N/A	68.5	182.5	188	97.1	349499.7	3899577.0	1598.15
NO2 Annual	21.4	N/A	N/A	20.2	41.6	99.66	41.7	349588.7	3899535.7	1593.16
NO2 Annual Increment	16.5	18.1	N/A	N/A	18.1	25	72.4	349274.2	3898638.3	1591.72
CO 1-Hr SIL	746	N/A	N/A	N/A	N/A	SIL - 2000	37.3	349588.7	3899535.7	1593.16
CO 8-Hr SIL	237	N/A	N/A	N/A	N/A	SIL - 500	47.4	349558.0	3899108.3	1584.55
SO2 1-Hr SIL	3.91	N/A	N/A	N/A	N/A	SIL – 7.8	50.1	349588.7	3899535.7	1593.16
PM10 24 -Hr NAAQS	5.0	70.3	N/A	74.0	144.3	150	96.2	351500.0	3901750.0	1578.78
PM10 24 Hr Increment		23.6	N/A	N/A	N/A	30	78.7	349248.1	3898598.7	1591.00
PM2.5 24-Hr	13.9	14.4	0.61	10.8	25.8	35	73.7	349248.1	3898598.7	1589.23
PM2.5 Annual	6.44	7.05	0.014	4.6	11.66	12	97.2	349445.7	3898916.0	1598.15

16-X: Summary/conclusions

1

A statement that modeling requirements have been satisfied and that the permit can be issued.

No NAAQS or PSD Increment was exceeded and relocation of identified sources can be performed.

